Analysis of volatile compounds and antioxidant activity of the essential oil of oregano (Origanum vulgare L.)

Jose Tapiero¹*, Guillermo Salamanca² and Carlos Marín³

¹Servicio Nacional de Aprendizaje SENA, Universidad Nacional de Colombia
²Universidad del Tolima.
³Servicio Nacional de Aprendizaje SENA.

Accepted 8 May, 2019

ABSTRACT

Aromatic plants make secondary metabolites that can be useful or toxic to an organism. In this work, we obtained Essential Oil (EO) by Microwave-assisted Hydrodistillation (MWHD). The process was carried out during the period from 15 min to 700 watts, with samples of 50, 100 and 200 g, collected in Vijes and Sevilla, Valle, Colombia. For each sample of essential oil the relative density at 20°C and the Refractive Index were evaluated (RI). The chemical composition was evaluated using GC-MS and its antiradical activity (AA) was carried out using the DPPH*, ABTS+ and ORAC methods. The process yield was between 0.087 ± 0.012 and 0.140 ± 0.005%. Significant differences were observed for the RI with values between 1.475 ± 0.001 and 1.484 ± 0.003 for a (Pv < 0.05). The highest contributions correspond to p-Cimeno (10.04), Terpinen-4-ol (9.48), Carvacrol (8.70%) and Thymol (1.95%) presented lowest values. The EO of oregano presents a good AA that ranges between 318.8 ± 0.009 to 320.6 ± 0.003 (Sevilla) and 310.8 ± 0.021 to 312.1 ± 0.014 (Sevilla) mmol Trolox/100 g for DPPH*, and 23.852 ± 0.018 to 24.019 ± 0.011 (Sevilla) and 23.128 ± 0.012 to 23.412 ± 0.009 (Vijes) mmol Trolox/100 g for ABTS+. Finally, oregano essential oils presented low molecular weight aliphatic compounds, being markers of these matrices.

Keywords: Chromatography, microwave, antioxidant activity, natural products, aromatic plants.

INTRODUCTION

Oregano (Origanum vulgare L.) is a medicinal plant with digestive, carminative, antioxidant and expectorant properties (Albado et al., 2001; Ortega et al., 2016; Olmedo et al., 2014). Considered a strong antioxidant, capable of retarding or preventing the oxidation of molecules, that behaves as free radicals that initiate chain reactions damaging the cells (Castillo et al., 2007).

Essential Oils (EOs) are complex natural compounds; that present between 25 and 70 components with different concentrations and exhibit two or three main components with a concentration between 20 and 70% compared to the rest of the components (Meng et al., 2012; Pandey et al., 2014). These are liquid and volatile compounds distributed in all parts of the plants, which can be extracted by different procedures: steam drag, hydro-distillation assisted by microwaves and supercritical fluids among others (Márquez, 2011; Hossain et al., 2012). These can be alcohols, ketones, ethers, aldehydes that are produced and stored in the secretory channels of plants (Baldwin et al., 1999; Mariod, 2016).

Microwaves are electromagnetic radiation with frequencies between 0.3 and 300 GHz. Domestic and industrial equipment operates at 2.45 GHz (Ferhat et al., 2006; Contreras, 2010). Due to their nature, they have electric and magnetic fields, which are perpendicular to each other (Contreras and Ruiz, 2012). The electric field is responsible for heating by bipolar rotation and ionic conduction, producing collisions with the surrounding molecules and allowing the release of thermal energy to the medium (León et al., 2015). When the extraction by Hydro-distillation Assisted by Radiation with Microwaves
(MWHD) is used the heat produces the expansion and breakage of the cell walls facilitating the exit of the Essential Oil (EO) to the surrounding solvent (Pandey et al., 2014; Calvacante et al., 2016). The moisture content is fundamental in MWHD because the water heats more and promotes the release of the analytes to the surrounding environment.

The analysis by Gas Chromatography coupled to Mass Spectroscopy (GC-MS) allows the identification of secondary metabolites present in EO, using comparative applications of NIST / EPA / NIH spectral mass libraries (Munhuweyi et al., 2018). In addition, it allows a qualitative analysis in a sample of 1 μl and when a standard substance is available, the calibration curve can consolidate an exact quantitative analysis of the sample (Li et al., 2014).

Normally, EOs are composed mainly of terpene hydrocarbons (myrecene, pinene, terpinene, limonene, p-cymene, α- and β-phellandrene) and (hydrocarbons containing oxygen) as acyclic monoterpen alcohols (geraniol, monocyclic alcohols (menthol, 4-carvomentol, terpineol, carveol, borneol), aliphatic aldehydes (citral, citronellal, perilaidehyde), aromatic phenols (carvacrol, thymol, safrole, eugenol), bicyclic alcohol (verbenol), monoterpene ketones (menthone, pulegone, carvone), monoterpane ketones (thujone, verbena, fenchona), acids (citronelic acid, cinnamic acid) and esters (linalyl acetate) (Zeng et al., 2016; Mariod, 2016). The constituennts of mono and essential oils are formed by condensation of isomentsyl pyrophosphate units (Mariod, 2016).

The oregano EO has a volatile fraction that is formed by hydrocarbons, sesquiterpenes and oxygenated derivatives such as aldehyde, alcohol, esters, oxides and aliphatics (Vaioa et al., 2010). In the Essential Oil of Oregano (EOO) flavonoids have been identified as Apigenin and Luteolin, aliphatic alcohols, terpenic compounds and derivatives of phenylpropane (Acevedo et al., 2013). Coumérinc, Fericulic acids have also been found, Caffeic, Hydroxybenzoic and Vanillinc (Naeini et al., 2010).

The subspecies Oreganum vulgare ssp. Hirtum has been studied, in relation to the quality of its essential oil (Albado et al., 2001). And the main components of this species are carvacrol and thymol originated by specific enzymes that direct their biosynthesis (Castillo et al., 2007; Amadio and Miralles, 2011). Generally, these two compounds are between 75.23 ± 0.004 and 78.14 ± 0.008%, which varies according to the bioclimatic conditions and the environment surrounding the crop (Naeini et al., 2010; Amadio and Miralles, 2011; Tapiero et al., 2016).

The yield of the essential oil in the dry leaf varies between 2 and 6% (Farhat et al., 2006). This percentage is affected by the altitude of the place of cultivation (Acevedo et al., 2013), and by the time of collection (Ali et al., 2015; Torrenengra, 2014).

Worldwide, a large number of species are recognized by the name of oregano; the characteristic genus is Origanum, although the Spanish oregano (Coridohylum capitatus L.) and the Mexican oregano (Limpia graveolens Kunth) are also recognized. In Argentina, the species Origanum majorana L. and O. vulgare L. and their hybrids, O. majoricum and O. applii, are recognized. Currently, many spices and herbs, particularly of the Lamiaceae family, to which oregano belongs and which have been evaluated as antioxidants and food preservatives, thus increasing its importance in the industry as an alternative to synthetic additives (Castillo et al., 2007; Amadio and Miralles, 2011).

In oregano monoterpinc hydrocarbons, Terpinene and r-Cymene are frequent components, sometimes at low concentrations (Munhuweyi et al., 2018; Torrenengra, 2014; Dutra et al., 2019). In Colombia (Acevedo et al., 2013; Silva-Flores et al., 2017), they have characterized three groups of mountain oregano present in relation to the composition of essential oils. A chemotype A rich in terpenes (monoterpenes and sesquiterpenes representing 45 and 27%, respectively), a second chemotype B, whose main components are Carvacrol (40%), p-Cymene (13%), g-Terpinene (11%) and Thymol (11%); These values are similar to those observed in samples from Brazil (18, 22). A third C chemotype has high levels of Thymol (56), p-Cymene (9%) and g-Terpinene (5%). This chemotype is similar to those reported in Venezuela (Amadio and Miralles, 2011; Leyva et al., 2007). It is worth indicating that, has carried out studies of a chemotype recognized as French oregano, (Plectranthus amboinicus (Lour.) Sprenger), on the Colombian Atlantic coast (León et al., 2015; Ali et al., 2015).

Antioxidants are substances that inhibit the cellular oxidation induced by toxins such as free radicals (Acosta and Carrón, 2011). These can come from natural digestion, the metabolism of food, environmental conditions, consumption of medicines and alcohol, among others (Harlen and Jati, 2018; Bajalan et al., 2017); causing oxidative damage to proteins, lipids, enzymes and DNA (Acosta and Carrón, 2011). Living cells have a good scavenging mechanism to avoid excess cell damage caused by free radicals (Harlen and Jati, 2018). However, with aging and external causes, these mechanisms become inefficient, requiring dietary supplementation of antioxidants. Under this condition, aromatic plants, especially their AEs, are being evaluated for their antioxidant activity (Muñoz et al., 2009).

The antioxidant activity was evaluated for the stable free radical DPPH* that oxidized and decolorized in the presence of two types of oregano (Origanum appli and Origanum majoricrum) from the city of Mendoza, Argentina; where the Origanum application presented greater sequestration power than O. majoricum for dilutions in low concentrations. At higher concentrations, no significant differences were found between them.
The production of AE focuses on countries that have large areas. According to the World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO), it is estimated that of the 2/3 of the population of our planet, 4 billion people turn to this type of products for their food and to cure their psychophysical ailments, turning the product into a high development potential for our country.

The objective of this research was to extract by microwave-assisted hydro-distillation (MWHD) essential oil of oregano (Origanum vulgare L.) from the municipalities of Sevilla and Vijes, Valle del Cauca, to characterize its physicochemical properties, to assess its chemical composition by chromatography of gases-mass spectrometry (GC-MS) and to evaluate its antioxidant activity against the DPPH*, ABTS* and ORAC methods.

RESULTS AND DISCUSSION

In the process of microwave-assisted extraction, transparent characteristic aroma oils are obtained, with an unctuous aspect soluble in ethanol, chloroform, ethyl ether and slightly soluble in water (Mechergui et al., 2016). The refractive index of the matrices studied was between 1.475 and 1.486, the yield of the process of time-dependent, the power and the amount of sample. Table 1 and Figure 1 show the relationship between the volume of oil extracted at constant power and weights between 50 and 200 g of leaves, with significant differences between treatments (Pv < 0.05).

As regards performance, significant differences were found between the extraction times for the MWHD method, this is due to the structural deterioration of the components present in the EO caused by the electromagnetic radiation used during the extraction. On the other hand, the heating generated by microwaves is homogeneous and at an accelerated rate compared to heating by conduction (Ferhat et al., 2006). However, it is important to consider cultivation methods and geobotanical conditions such as altitude, climate, temperature, soil, lightness, and rainfall, time of harvest and age of the plant.

The EOs presented significant differences for the refractive index parameter. These were between 1.475 ± 0.001 and 1.484 ± 0.003 for one (Pv < 0.05), being an important measure in the determination of the quality due to the fact that it allows to control any type of adulteration because it is an exclusive parameter for each EO (Mejía, 2015). The optical activity is a value that changes in the EOs according to the bioclimatic conditions, environment and type of extraction, but at the same time, it is a very fixed quantity for each type of oil that establishes if this has been mixed with other matrices (Pandey et al., 2014).

The works related to the composition of the essential oil...
of oregano show great variability (Stefanovic et al., 2015). It depends mainly on the part of the plant that is distilled and the species or subspecies. In all cases, thymol and Carvacrol coincide as the majority compounds. In addition, it has been observed that in *Origanum vulgare* the high content of polyphenolic compounds has been proven, which provide effective protection in all phases of lipid oxidation (Amadio and Miralles, 2011; Muñoz et al., 2009).

In Table 2, the main constituents of oregano essential oil are listed, with 20 compounds distributed in a ketone, an epoxide, seven alcohols and eleven cyclic hydrocarbons (Figure 2). These same components have been reported in other research works (Acevedo et al., 2013; Amadio and Miralles, 2011) with similar values. Dihydrocarvone and caryophyllene oxide have low concentrations, while the highest contributions correspond to p-cymene (10.1%), terpinene-4-ol (9.48%), carvacrol (8.90%) and thymol (1.95%) proper to the botanical family. The presence of these metabolites coincides with the report of Silva-Flores et al. (2017), Acevedo et al. (2013), Acosta and Carreño (2011) and Tapiero et al. (2016).

During the antioxidant evaluation of a food product, the interactions that occur between the compounds with the different mechanisms of action are considered (Omar et al., 2012). For this reason, it is necessary to evaluate its capacity through different methods according to its root source. Antioxidants can act by several mechanisms and their results are expressed as an antiradical activity IC\textsubscript{50} (effective concentration 50) known as the amount of antioxidant that decreases radical absorption to 50% of the initial amount.

The effective concentration (IC\textsubscript{50}) measures the uptake capacity of the ABTS•− or DPPH* radicals of the EO against an antioxidant standard such as ascorbic acid,
Table 2. Volatile components present in the Oregano EO extracted by microwaves.

<table>
<thead>
<tr>
<th>Function</th>
<th>Compound</th>
<th>RT (min)</th>
<th>IK</th>
<th>% Ppm</th>
<th>Com- pound</th>
<th>RT (min)</th>
<th>IK</th>
<th>% ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Terpinen-4-ol</td>
<td>11.44</td>
<td>1628</td>
<td>9.48</td>
<td>t-Murolol</td>
<td>17.56</td>
<td>2148</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>L-α-Terpineol</td>
<td>11.63</td>
<td>1634</td>
<td>2.81</td>
<td>α-Cadinol</td>
<td>17.70</td>
<td>1652</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Thymol</td>
<td>12.94</td>
<td>2120</td>
<td>1.95</td>
<td>Carvacrol</td>
<td>13.06</td>
<td>1299</td>
<td>8.90</td>
</tr>
<tr>
<td></td>
<td>(-)-Espa- tulenol</td>
<td>16.80</td>
<td>1578</td>
<td>0.05</td>
<td></td>
<td>17.56</td>
<td>2148</td>
<td>0.15</td>
</tr>
<tr>
<td>Ketone</td>
<td>Dihydorcar- vone</td>
<td>11.66</td>
<td>1748</td>
<td>0.09</td>
<td></td>
<td>17.56</td>
<td>2148</td>
<td>0.15</td>
</tr>
<tr>
<td>Epoxide</td>
<td>O. Cariofilene</td>
<td>16.90</td>
<td>1561</td>
<td>0.13</td>
<td></td>
<td>17.56</td>
<td>2148</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>α-Felandrene</td>
<td>8.61</td>
<td>1146</td>
<td>1.76</td>
<td>Cariofilene</td>
<td>14.84</td>
<td>1658</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>α-Terpinene</td>
<td>8.78</td>
<td>1258</td>
<td>0.50</td>
<td>β-Copaene</td>
<td>14.96</td>
<td>1389</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>p-Cymene</td>
<td>8.92</td>
<td>1248</td>
<td>10.1</td>
<td>β-Bisabolene</td>
<td>15.87</td>
<td>1726</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>D-Limone- ne</td>
<td>8.99</td>
<td>1212</td>
<td>2.54</td>
<td>Humulene</td>
<td>15.31</td>
<td>1608</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Y-Terpi- nene</td>
<td>9.47</td>
<td>1078</td>
<td>4.52</td>
<td>Naphthalene</td>
<td>16.03</td>
<td>1179</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>β-Bourbonene</td>
<td>14.35</td>
<td>1388</td>
<td>0.31</td>
<td></td>
<td>17.56</td>
<td>2148</td>
<td>0.15</td>
</tr>
</tbody>
</table>

CH: Cyclic Hydrocarbon; RT: Retention Time – Column: BR-5 ms (30 m × 0.25 m, 0.25 μm).

![Figure 2. Chromatogram characteristic of the oregano essential oil extracted with the assistance of a microwave system.](image)

which yields a hydrogen, generating a transfer of double bond electrons, up to oxygen, which suffered the loss of the hydrogen atom until the energy balance was established. Where, the ascorbic acid finally yields two hydrogens.

The antioxidant activity for the working concentrations (5, 10 and 40) μg/ml was between 318.8 ± 0.009 to 320.6 ± 0.003 (Seville) and 310.8 ± 0.021 to 312.1 ± 0.014 (Vijes) mmol Trolox/100 g for DPPH*, and 23.852 ± 0.018 to 24.019 ± 0.011 (Seville) and 23.128 ± 0.012 to 23.412 ± 0.009 (Vijes) mmol Trolox/100 g for ABTS+ (Table 3). It is possible to conclude that the extraction time influences the types of compounds in the mixture, which determine their antiradical capacity.

The antioxidant activity for the EO oregano (O. vulgare L.) obtained by MWHD by the lipophilic ORAC value was 0.3072 ± 0.006-0.3256 ± 0.004 mmol Trolox/100 g and 0.3014 ± 0.012 to 0.3056 ± 0.010 mmol Trolox/100 g for
the samples obtained in Seville and Viges, respectively. Showing that this EO has a high capacity to inhibit the discoloration of the fluorescein molecule (Amadio and Miralles, 2011; Boskovic et al., 2015).

CONCLUSION

Microwave-assisted hydro-distillation (MWHD) is a method of extracting essential oils with broad advantages over the traditional method. It is a process that does not require high water consumption and without solvents, with shorter process times (three times of 15 min at a power of 700 watts) and good yields (0.087 to 0.140%). Chromatographic analyzes expose p-Cymene (10.1%), terpinen-4-ol (9.48%), carvacrol (8.90%) and thymol (1.95%) as the main components of the samples evaluated. The antiradical capacity of the EO of oregano showed good antioxidant activity for each of the methods analyzed; evidencing that it is a product to be taken into account for the incorporation in agro-industrial products and in edible films and coatings for food.

REFERENCES

Asensio CM, 2013. Varieties of oregano as an antimicrobial preservative, antioxidant and the sensory properties of foods: cottage cheese, ricotta and olive oil.

Contreras VH, 2010. Y Bioquímica. p. 34.

Márquez SD, 2011. Evaluation of the yield in the obtaining of the oil "Piper auritum kunth" by means of hydrodynamization assisted by...
microondas. Universidad Veracruzana - Veracruz - México.

Torrenengra AME, 2014. Evaluation of the antioxidant activity of the foliar essential oil extracted from oregano species (Origanum vulgare), oregano “White border” (Origanum vulgare ssp) and oreganie (Lippia alba mill) cultivated in the northern area of the department of Boliv. Universidad Nacional de Colombia - Universidad de Cartagena.

