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ABSTRACT 
 
We propose an alternative method of obtaining the nth moment of the joint distribution of the cth power of 
the random variable X and the dth power of the random variable Y about zero for all non-negative values of 
c and d. The method, denoted by µn (c, d), may be termed „moment of power generating function (mpgf)‟. It 
exists for all continuous distributions unlike in contenders-the factorial moments and the moment generating 
functions which do not always exist. The proposed µn (c, d) is illustrated with some continuous bivariate 
distributions and is shown to be easy to use even when the powers of the random variables being 
considered are non-negative real numbers that need not be integers. The results obtained using µn (c, d) are 
the same as results obtained using other methods such as moment generating functions when they exist. 
 
Keywords: Moment generating function, joint distribution, integers, probability density function, non-
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INTRODUCTION 
 

The expected value  cn dnE X Y  is usually interpreted as 

the  ,cn dn th  moment of the joint distribution of the 

random variables X and Y about zero. However, if written 

as  
n

c dE X Y , then  cn dnE X Y  may be viewed as the 

nth moment of the joint distribution of 
c dX and Y about 

zero where n is a non-negative interger while c and d are 
non-negative real numbers but not necessarily intergers. 
This situation could arise for example when a researcher 
has preliminary information on the various X and Y but 
his primary interest is to obtain information on the joint 
distribution and characteristics of some non-linear 
functions of these variables (Uche, 2003; Oyeka, 1996). 

The moment  
n

c dE X Y  may simply be obtained using 

the usual definition of expected values of random 
variables or by using relative factorial moments or 
moment generating functions (Baisnab and Manoranjan, 
1993). The problem with the latter two is that they do not 
exist for every probability distribution and even if they 
exist, their use may be rather difficult especially in finding 
higher  moments   when   repeated   differentiations   and  

evaluations may be involved. 
In this paper, we propose a method that is easier to use 

based on methods applied by some authors (Oyeka et 
al., 2009; Spiegel, 1998; Freund, 1992); specifically, we 
intend to develop an alternative method of obtaining the 
nth moment or expected value of the joint distribution of 
the cth power of the random variable X and the dth power 
of the random variable Y about zero; where n is a non-
negative integer while c and d are non-negative real 
numbers. We here assume according to Freund (1992) 
and Hay (1973) that both X and Y are continuously 
differentiable on the real line or over their range of 
definition with joint probability density function (PDF) 
f(x,y). For lack of a better notation, we here use 

 ,n c d to denote the nth moment or expected value of 

the joint distribution of the cth power of the random 
variable X and the dth power of the random variable Y 

about zero. Also from its definition,  ,n c d may be 

viewed as a generating function of the moments of the 
joint distribution of powers of the random variables X and 

Y about zero for various values of n. Thus,  ,n c d  is a 

sort of „moment of power generating function  (mpgf)”  of  
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the joint distribution of powers of X and Y, and may be 
termed. Clearly, given the joint distribution of X and Y, 

any functions of X and Y such as 
c dX and Y  also have 

their own joint distributions which can easily be found. 

Strictly speaking, in finding  
n

c dE X Y , one would need 

to first find and then use the joint distribution of 
c dX and Y  in the calculations. However, as illustrated 

below, the results obtained when using either the joint  
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distribution of 
c dX and Y or simply the joint distribution of 

X and Y are always the same. Hence, in finding the 
moments of the distribution of some functions such as 

c dX and Y  of given random variables X and Y; it is not 

necessary to find and use the joint distribution of these 
functions. It is sufficient to simply use only the joint 
distribution of the random variables themselves in the 
calculations. This approach is adopted here. 

 
 
THE PROPOSED METHOD 
 
Now, 
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   , ,where cn dn is the cn dn th moment of the joint distribution of X and Y about zero. The first part of the above 

equation shows that the nth moment of the joint distribution of 
c dX and Y  can be found for all non-negative real values 

of c and d including non integral values. Furthermore, the second part of the above equation shows that this moment 

can be found as the  ,cn dn th  moment of the joint distribution of X and Y about zero. In other words; 

  

     , , , (2)cn dn

n c d cn dn x y f x y dxdy 
 

 
     

 

Note that  0 , 1c d  for all ( 0; 0)c d  as expected. Equation 2 may be used to obtain any desired moment of the 

joint distribution of 
c dX and Y , for example: The first moment (n = 1) of the joint distribution of 

c dX and Y about zero 

is, 
 

   1 , (3)c dX Y c d                                                                                                                         (3) 

     1 , , , .c dwhere c d c d x y f x y dxdy 
 

 
     

 

And the joint variation of the distribution of 
c dX and Y is  

 

   
2

2 1var ( , ) , (4)c dX Y c d c d                                                                                              (4) 

 

Which is the (2
nd

) second moment of the joint distribution of 
c dX Y about its  mean.  The  Skewness  (Sk)  and  Kurtosis  
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(Ku) of this distribution can also be easily calculated using equation 2 if desired. Thus, the Skewness of the joint 

distribution of 
c dX and Y  is given as, 
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While the corresponding Kurtosis (KU) is obtained as, 
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If in Equation 2, we set (d = 0), we obtain the nth moment of the marginal distribution of 
cX about zero; the nth moment 

of the marginal distribution of 
cX that is, 

 

  ( ) ( , ) (7)x n nc c o                                                                                                              (7) 

 

Similarly the nth moment of the marginal distribution of 
dY about zero; is obtained by setting (c = 0) in Equation 2 that is: 

 

( ) ( , ) (8)y n nc o d                                                                                                                 (8) 

 

The Skewness (SK) and Kurtosis (KU) of the marginal distribution of 
c dX and Y may also be obtain, for example the 

Skewness of the marginal distribution of 
cX  is obtained using Equation 7 as: 
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While the corresponding Kurtosis is, 
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The Skewness and Kurtosis of the marginal distribution of 
dY  are similarly obtained using Equation 8. 

 
 
Illustrative example 
 
Suppose two continuous random variables X and Y have the joint pdf; 

 

2

2
( , ) , (0 1; 0) (11)

y

f x y xy x y





                                                            (11) 

 
Then we have from Equation 2 that; 
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Note from Equation 12 that here as always  0 , 1.c d  Note also that for n = 1, we have used equations 3 and 9, 

therefore the mean of the joint distribution of 
c dX and Y is: 

 

1

2 2
( , )

2

d d
c d

c








. 

 

As noted earlier, c and d need not be integers. Thus, if here 
1 1

3 2
c and d   then the mean of the joint distribution of 

1 1

3 2X and Y  is: 

 
1 1

2 2
1 1

3 2
1

1 1 1
2 2 2 1

21 1 2 2
, 1.14
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3 3
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While using equation 4 and 12 we have that the variance of the joint distribution of 
c dX Y is: 

 
1

(2)
2

2 2
1 1 2
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1
2 (2) 2

2 9 92
0.20

1 814 14
(2) 2

3 3
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Equation 12 would have also been obtained using the joint distribution of 
c dX Y given the joint distribution of X and Y. 

Thus, if we let ,c dlet U X and V Y  then the joint distribution of U and V given the above joint distribution of X and 

Y in equation 10 is: 
 

    

1

2

2 2
1 12

, , 0 1 0 (13)

dV

c dg u v U V U V
cd





 

     

 
Hence 
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That is, 
 

 
2 2

, (14)
2

dn

n n

n

d
c d EU V

cn





 


                                                                                       (14) 

 

The same result as obtained in Equation 12 based directly on the joint distribution of X and Y. The moment, ( )
nx c of 

the marginal distribution of 
cX for this illustrative example may be easily obtained by setting d = 0 in either Equation 12 

or 14 or on the basis of the marginal distribution of 
cX given in Equation 11 as: 

 

2
( ) ( , ) (15)

2
xn nc c o

cn
  


                                                                                                    (15) 

 
Similarly 
  

( ),
ny d the corresponding nth moment of the marginal distribution of 

dY  is: 

 

( ), ( , ) 2 (16)dn

yn nd o d dn                                                                                        (16) 

 

As an illustrative example the first moment (n = 1) of the marginal distribution of 

1

3X  about zero is obtained using 
Equation 15 as: 
 

1 1

13 3
2 6

1 7
(1) 2

3

x xX X 
   

     
    

 

 

While the corresponding variance is obtained from Equations 7 and 15 for 
1

3
c  as: 

 

2 1

21 1

3 3
1 3 6

( ) 0.02
3 4 7

x xVar x X 
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The Skewness of the marginal distribution of 

1

3x  is easily obtained from Equation 9 with 
 

3

2

1 5.78
2043.5

3
0.02

c as skewness


    

 

The kurtosis (KU) may also be found using equation 10 with 
1

3
c  if desired. Similar calculations may be made using 

equation 16 to obtain desired moments for the marginal distribution of 
dY . Suppose the random variables X and Y have 

the joint probability density function (pdf) 
 

 
 

1 2

1 2 1 2

( , ) ( ) , 0, 0 (17)
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The  ,n c d  corresponding to this distribution is obtained using Equation 2 as: 
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  and integrating and evaluating yields 
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        (18) 

 

To find the mean of the joint distribution of X and Y, we set c = d = 1 and n = 1 in Equation 18 to obtain 
  

   1 2 1 2 1 2 1 2

1 1 2

1 2 1 2

1 2 1 1 1 2 1 1 2 2
(1,1) 2

       
  

   

     
  

 
 

 
The variance of this joint distribution is obtain using Equation 4 in 18 as: 
 

 
22 2 2 2 2

2 1 1 2 1 2 1 2( , ) (1,1) (1,1) 12 2 8Var x y              

 
The Skewness of this joint distribution is similarly obtained using Equation 5 in 18 with c = d = 1 as: 
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It is easily calculated from equation 18 for 
3 1

2 2
c and d   that the first moment of the joint distribution of  

3 1

2 2X and Y  about zero is: 
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and the ond moment n is


   


 

   


 

 
 

  
 



 
 

 

 

 

The nth moment of the marginal distributions of 
c dX and Y about zero are obtained from Equation 18 respectively as: 
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For this example if 
1

3
c  , then the first moment (n = 1) of the marginal distribution of 

1

3X is obtained from Equation 19 

for n = 1 and 
1

3
c   as, 

 

1

1
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1
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1 2
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1 9( )
3

xEX

  


 



 


 

 
And the corresponding second moment (n = 2) is, 
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To illustrate the needed modification we note that the marginal distribution of X in Equation 17 is: 
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Therefore the pdf of  0cY X c  is 
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The nth moment of the distribution of 
cY X about zero is taken as the co-efficient of 

!

nt

n
 or the nth derivative of 

( )YM t  with respect to t evaluated at t = 0, in the expansion of Equation 23. That is, 
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This then yields the same result as our ( )xn c in Equation 19. Thus, the extra work involved in correctly obtaining the 

required moment using moment generating functions, when c, d or both  are not whole numbers is quite lengthy. As may 
be easily verified, the above results, in cases where both c and d are whole numbers, are the same as would be 
obtained using the moment generating function for the distribution in Equation 17 namely: 
 

  
2 2

1 2 1 2 1 2 1 1 2 2

( , ) 1 2

1 2

( 1 (1 )
( , )x y

t t t t
M t t

     

 

     



 

 
 
This is therefore the moment generating function of the 
joint probability density function of the random variables 
X and Y as given in Equation 17. However, in situations 
where c and d are not whole numbers, this moment 

generating function unlike the ( , )n c d cannot be 

correctly used without proper modifications to obtain the 
required moments of the distributions unless both cn and 
dn happen to be whole numbers. Unlike such other 
methods as the moment generating function, the 

( , )n c d is able to yield moments of the distribution of all 

non-negative real powers of the random variables X and 
Y not just integer values, as in the case of moment 
generating function the moment of the marginal 

distribution of 
c dX or Y are obtained by setting either d = 

0 or c = 0 in their joint moment of powers of generating 

function  ( )( ( , )nmpgf c d . The proposed method 

( , )n c d is easy to use since the process simply involves 

using the desired n in available formula and evaluating 
the results to obtain the required moment. Hence, in all 

cases ( , )n c d which always exists for all continuous 

distributions, is easier and quicker to use since the 
process simply involves using a desired n in the available 
formula and evaluating the result to obtain the required 
moment but in other methods such as factorial moments 
and moment generating function the process would 
involve first, properly modify the functions to be 
consistent with the desired distributions before 
differentiating the function, if it exists, n times before 
evaluating the results to obtain the required moment. This 
process clearly becomes increasingly more difficult and 
time consuming as n becomes larger. 

 
CONCLUSIONS 
 
We have presented in this paper the so called 

( , )n c d as the nth moment of the joint distribution of the 

cth power of X and dth power of Y about zero for all non-
negative values of c and d which may here be termed 
“moment of power generating function (mpgf), since it 
generates moments of the bi-variate distributions of 
powers of random variables X and Y. The proposed 

( , )n c d  exists for all continuous probability distributions 

unlike some of its competitors such as factorial moments 
of moment generating function which do not always exist. 

The results obtained using ( , )n c d  are the same as 

results obtained using such other methods as moment 
generating functions of available. The proposed method 
is available and easy to use without the need for any 
modifications even when the powers of the random 
variable being considered are non-negative real numbers 
that do not need to be integers. 
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